Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme
نویسندگان
چکیده
Understanding the molecular architecture of the flagellum is crucial to elucidate the bending mechanism produced by this complex organelle. The current known structure of the flagellum has not yet been fully correlated with the complex composition and localization of flagellar components. Using cryoelectron tomography and subtomogram averaging while distinguishing each one of the nine outer doublet microtubules, we systematically collected and reconstructed the three-dimensional structures in different regions of the Chlamydomonas flagellum. We visualized the radial and longitudinal differences in the flagellum. One doublet showed a distinct structure, whereas the other eight were similar but not identical to each other. In the proximal region, some dyneins were missing or replaced by minor dyneins, and outer-inner arm dynein links were variable among different microtubule doublets. These findings shed light on the intricate organization of Chlamydomonas flagella, provide clues to the mechanism that produces asymmetric flagellar beating, and pose a new challenge for the functional study of the flagella.
منابع مشابه
Asymmetry of inner dynein arms and inter-doublet links in Chlamydomonas flagella
Although the widely shared "9 + 2" structure of axonemes is thought to be highly symmetrical, axonemes show asymmetrical bending during planar and conical motion. In this study, using electron cryotomography and single particle averaging, we demonstrate an asymmetrical molecular arrangement of proteins binding to the nine microtubule doublets in Chlamydomonas reinhardtii flagella. The eight inn...
متن کاملOuter doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella
Analysis of serial cross-sections of the Chlamydomonas flagellum reveals several structural asymmetries in the axoneme. One doublet lacks the outer dynein arm, has a beak-like projection in its B-tubule, and bears a two-part bridge that extends from the A-tubule of this doublet to the B-tubule of the adjacent doublet. The two doublets directly opposite the doublet lacking the arm have beak-like...
متن کاملThe bop2-1 mutation reveals radial asymmetry in the inner dynein arm region of Chlamydomonas reinhardtii
Strains of Chlamydomonas reinhardtii with a mutant allele at the BOP2 locus swim slowly and have an abnormal flagellar waveform similar to previously identified strains with defects in the inner arm region. Double mutant strains with the bop2-1 allele and any of 17 different mutations that affect the dynein arm region swim more slowly than either parent, which suggests that the bop2-1 mutation ...
متن کاملOne of the Nine Doublet Microtubules of Eukaryotic Flagella Exhibits Unique and Partially Conserved Structures
The axonemal core of motile cilia and flagella consists of nine doublet microtubules surrounding two central single microtubules. Attached to the doublets are thousands of dynein motors that produce sliding between neighboring doublets, which in turn causes flagellar bending. Although many structural features of the axoneme have been described, structures that are unique to specific doublets re...
متن کاملA tektin homologue is decreased in chlamydomonas mutants lacking an axonemal inner-arm dynein.
In ciliary and flagellar axonemes, various discrete structures such as inner and outer dynein arms are regularly arranged on the outer doublet microtubules. Little is known about the basis for their regular arrangement. In this study, proteins involved in the attachment of inner-arm dyneins were searched by a microtubule overlay assay on Chlamydomonas mutant axonemes. A 58-kDa protein (p58) was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 198 شماره
صفحات -
تاریخ انتشار 2012